
 

UNSTEADY HEAT TRANSFER IN A SYSTEM
OF THREE COAXIAL FINITE CYLINDERS

V. V. Mel’nikov UDC 513.43 + 536.21

An integral transformation with the aid of which a solution of the problem of unsteady-state heat transfer in
a system of three coaxial finite cylinders with different boundary conditions on their surfaces depending on
space and time is presented. Each of the cylinders evolves heat of a certain intensity, depending on time and
coordinates. A numerical solution of one variant of the boundary conditions is given and illustrated by fig-
ures. The method of transforming the solution of the problem with other boundary conditions is shown.

Investigations are known [1–3] pertaining to problems of heat transfer in conjugated bodies of different shapes
with substantial restrictions in the boundary functions in which the Laplace and Hankel integral transformations are
used. In [4], a solution of the problem of heat conduction for two conjugate bodies, which is based on the author’s
theory of Fourier–Hankel integral transformations, is given. However, it is indicated in that work that the approach de-
veloped can be used only in certain simple cases, viz., at constant values of the boundary functions in the problem
statement.

In the present work and in [5], an integral transformation is suggested, which differs from the well-known
ones and which allows one to obtain the solution of the heat-conduction problem for two, three, or more conjugate
bodies with boundary functions depending on space and time. This makes it possible to considerably expand the class
of the heat-conduction problems solvable analytically. It should be noted that the proposed form of solution can be
used with slight changes for the problems of a body of a given shape with all kinds of boundary functions.

Below, as an example, a nonstationary axisymmetric problem of heat conduction is considered in a system of
three coaxial finite cylinders, on the outer boundaries of which boundary functions can be adopted, which, in what fol-
lows, are called the boundary conditions of heat transfer of the first, second, or third kind depending on both space
and time. At the boundary of conjugation of the cylinder layers there is a complete thermal contact (boundary condi-
tions of the fourth kind). Moreover, it is assumed that the cylinder layers generate heat, the release of which depends
also on space and time.

To obtain a solution of the problem, finite integral transformations with respect to two coordinates of the cyl-
inder are used. In the solution presented, one of the possible variants of boundary conditions is considered, but, as will
be shown below, it can be easily altered to obtain a solution with other boundary conditions.

The cylindrical system of coordinates and the geometry of the cylinder are presented in Fig. 1. The problem
of determining the temperature field in the cylinder can be presented in the form of heat-conduction equations and
conditions on the outer boundaries and on the boundaries of conjugation of the cylinder layers, as well as initial con-
ditions. The following boundary conditions are adopted: on the inner cylindrical surface r = R1 — the condition of the
2nd kind; on the outer cylindrical surface r = R4 — the condition of the 3rd kind; on the lower end of the cylinder
— the condition of the 2nd kind, and on the upper end — the condition of the 3rd kind.

Mathematically, the problem posed can be represented by the heat-conduction equations:
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by boundary conditions on the inner cylindrical surface

λ1 
∂T1

∂r



r=R1

 + q (τ, z) = 0 , (2)

on the outer cylindrical surface

λ3 
∂T3

∂r



r=R4

 + α1 

T3r=R4

 − T
 m

 (τ, z)

 = 0 , (3)

on the lower and upper ends of the cylinder, respectively,

λi 
∂Ti

∂z



z=b

 + qi+1 (τ, r) = 0 ,   Ri ≤ r ≤ Ri+1 ,   i = 1, 2, 3 , (4)

λi 
∂Ti
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

z=c

 + αi+1 Tiz=c
 − Ti+1

 m
 (τ, r) = 0 ,   Ri ≤ r ≤ Ri+1 ,   i = 1, 2, 3 ; (5)

on the boundaries of conjugation of the cylinder layers

T1r=R2

 = T2r=R2

  ,   T2r=R3

 = T3r=R3

 ,  λ1 
∂T1

∂r



r=R2

 = λ2 
∂T2

∂r



r=R2

 ,  λ2 
∂T2

∂r



r=R3

 = λ3 
∂T3

∂r



r=R3

 ; (6)

and by the initial conditions

Tiτ=0
 = Ti0 (r, z) ,   i = 1, 2, 3 . (7)

Here, 1, 2, and 3 denote the inner, middle, and outer cylinders (see Fig. 1).
We will introduce the following change of variables:

z = √ai  y ,   r = √ai  x     when     b ≤ z ≤ c ,   Ri ≤ r ≤ Ri+1 ,   i = 1, 2, 3 . (8)

Fig. 1. Geometry of the cylinder and the coordinate system: 1–3, numbers of
cylinders.
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Then Eqs. (1)–(7) will take the form
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ai
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 wii ,

Zi (τ, x, y) = Ti (τ, r, z) ,   x2i−1 < x < x2i ,   y2i−1 < y < y2i ,   i = 1, 2, 3 ;

(9)

b1 
∂Z1

∂x



x=x1

 + qu (τ, y) = 0 ,   y1 ≤ y ≤ y2 ; (10)

b3 
∂Z3

∂x



x=x6

 + α1 

Z3x=x6

 − θm
 (τ, y)


 = 0 ,   y5 ≤ y ≤ y6 ; (11)
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∂Zi
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
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 + qui+1 (τ, x) = 0 ,   x2i−1 ≤ x ≤ x2i ,   i = 1, 2, 3 ; (12)

bi 
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m
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
 = 0 ,   x2i−1 ≤ x ≤ x2i ,   i = 1, 2, 3 ; (13)
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 = Z2x=x5

 ,  b1 
∂Z1

∂x
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
x=x2
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∂Z2

∂x



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 ,  b2 
∂Z2

∂x



x=x4

 = b3 
∂Z3

∂x



x=x3

; (14)

Ziτ=0
 = θi0 (x, y) ,   i = 1, 2, 3 , (15)

where

bi = λi
 ⁄ √ai  ;   wii (τ, x, y) = wi (τ, r, z) ;   qi+1 (τ, r) = qui+1 (τ, x) ;   Ti+1

 m
 (τ, r) = θi+1

m
 (τ, x) ,   i = 1, 2, 3 ;

q (τ, z) = qu (τ, y) ;   T m
 (τ, z) = θm

 (τ, y) ;

x1 = R1
 ⁄ √a1  ;   x2 = R2

 ⁄ √a1 ;   x3 = R2
 ⁄ √a2  ;   x4 = R3

 ⁄ √a2  ;   x5 = R3
 ⁄ √a3  ;   x6 = R4

 ⁄ √a3  ;

y1 = b ⁄ √a1  ;   y2 = c ⁄ √a1  ;   y3 = b ⁄ √a2 ;   y4 = c ⁄ √a2 ;   y5 = b ⁄ √a3 ;   y6 = c ⁄ √a3 .

(16)

To solve system (9)–(15), the following integral transformation will be determined:

Z
__

 (τ, s, y) = ∑ 

i=1

3

Ai   ∫ 
x2i−1

x2i

  xZi (τ, x, y) Ui (sx) dx , (17)

where s denotes the roots of the characteristic equation presented below; Ui(sx) satisfies the following equations and
boundary conditions:
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x
 
dUi

dx
 + s

2
Ui = 0 ,   x2i−1 < x < x2i ,   i = 1, 2, 3 ; (18)

dU1

dx


x1

 = 0 ,   U1x2

 = U2x3

 ,   b1 
dU1

dx


x2

 = b2 
dU3

dx


x3

 ,   U2x4

 = U3x5

 ,

b2 
dU2
dx



x4

 = b3 
dU3

dx


x5

 ,   b3 
dU3

dx


x6

 + α1U3x6

 = 0 . (19)

Equations (18) have the solutions [6]

Ui (sx) = C2i−1 J0 (sx) + C2iY0 (sx) ,   i = 1, 2, 3 ,

where Ci are arbitrary constants; J0(sx) and Y0(sx) are the Bessel functions of the 1st and 2nd kinds and order zero.
Conditions (19) yield the following system of equations:

C1J1 (sx1) + C2Y1 (sx1) = 0 ,

C1J0 (sx2) + C2Y0 (sx2) − C3J0 (sx3) − C4Y0 (sx3) = 0 ,

b1 (C1J1 (sx2) + C2Y1 (sx2)) − b2 (C3J1 (sx3) + C4Y1 (sx3)) = 0 ,

C3J0 (sx4) + C4Y0 (sx4) − C5J0 (sx5) − C6Y0 (sx5) = 0 ,

b2 (C3J1 (sx4) + C4Y1 (sx4)) − b3 (C5J1 (sx5) + C6Y1 (sx5)) = 0 ,

− b3s (C5J1 (sx6) + C6Y1 (sx6)) + α1 (C5J0 (sx6) + C6Y0 (sx6)) = 0 ,

(20)

which has a nontrivial solution only in the case where its determinant vanishes. This condition yields the characteristic
equation for determining the numbers
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0
0
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0
0
0

     

0
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a43
a53
0

     

0
a24
a34
a44
a54
0

     

0
0
0

a45
a55
a65

     

0
0
0

a46
a56
a66















 = 0 , (21)

where a11, a12, a21, ... are the coefficients at C1, C2, C3, ..., following from (20).
By applying simple transformations, having excluded interdeterminate constants C2, C3, C4, C5, and C6, the

following expressions will be obtained for the functions U1(sx), U2(sx), and U3(sx):

U1 (sx) = C1 (J0 (sx) + f1Y0 (sx)) ,

U2 (sx) = C1 (f2J0 (sx) + f3Y0 (sx)) ,  U3 (sx) = C1 (f4J0 (sx) + f3Y0 (sx)) .
(22)

The coefficients fi (i = 1, 2, 3, 4, 5) involve the quantities a11, a12, a21, ... .
In integral transformation (17) and expressions (22) the constants A1, A2, A3, and C1 remain interdeterminate.

The values of A1, A2, and A3 are determined from the condition of orthogonality of the functions Ui(sx), which at
s ≠ p presupposes the fulfillment of the relationships
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  ∫ 
x1

x2

xU1 (sx) U1 (px) dx = 0 ,   ∫ 
x3

x4

xU2 (sx) U2 (px) dx = 0 ,   ∫ 
x5

x6

xU3 (sx) U3 (px) dx = 0 ,

which follow from the equality

(s2
 − p

2) 






A1 ∫ 

x1

x2

xU1 (sx) U1 (px) dx + A2 ∫ 
x3

x4

xU2 (sx) U2 (px) dx + A3 ∫ 
x5

x6

xU3 (sx) U3 (px) dx










 = 0

and boundary conditions (19) at s ≠ p and A1 = x3b1/x2b2, A2 = 1, and A3 = x4b3/x5b2. The constant C1 is determined
from the condition of orthonormability of the functions Ui(sx):

A1 ∫ 
x1

x2

x [U1 (sx)]2
 dx + A2 ∫ 

x3

x4

x [U2 (sx)]2
 dx + A3 ∫ 

x5

x6

x [U3 (sx)]2
 dx = 1 .

Thus, the integral transformation (17) has been determined. After integral transformation, Eq. (9) yields

  ∑ 

i=1

3

Ai  ∫ 
x2i−1

x2i

 x 







∂Zi

∂τ
 − 

∂2
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∂x
2

 − 
1

x
 
∂Zi
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 − 

∂2
Zi

∂y
2

 − 
ai

λi

 wii







 Ui (sx) dx = 0 .

As a result of the transformation, the last relationship will take the form

∂Z
__

∂τ
 = 

∂2
Z
__

∂y
2  + s

2
Z
__

 + FP1 (τ, s, y) + FP2 (τ, s, y) , (23)

FP1 (τ, s, y) = A1x1U1x1

 
qu (τ, y)

λ1
 + A3x6U3x6

 
α1

λ3
 θm

 (τ, y) ; (24)

where

FP2 (τ, s, y) = ∑ 

i=1

3

Ai 
ai

λi
   ∫ 
x2i−1

x2i

  xwii (τ, x) Ui (sx) dx . (25)

By virtue of the determination of the integral transformation (17), Eq. (23) is valid within the ranges
x1 ≤ x ≤ x2, x3 ≤ x ≤ x4, and x5 ≤ x ≤ x6. Its solution will be found within each of these intervals on having represented
conditions (12) and (13) at the boundaries y1, y2, y3, y4, y5, and y6 in the form

bi 
∂Z
__

i

∂y



y=y2i−1

 + qu
__

i+1 (τ, s) = 0 ,   bi 
∂Z
__

i

∂y



y=y2i

 + αi+1 

Z
__

iy=y2i

 − θ
__

i+1
 m

 (τ, s)

 = 0 ,   i = 1, 2, 3 , (26)

here

qu
__

i+1 (τ, s) = ∑ 

i=1

3

Ai   ∫ 
x2i−1

x2i

  xUi (sx) qui+1 (τ, x) dx ;
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θ
__

i+1
 m

 (τ, s) = ∑ 

i=1

3

Ai   ∫ 
x2i−1

x2i

  xUi (sx) θi+1
m

 (τ, x) dx ,   i = 1, 2, 3 .

To solve Eq. (23) within the ranges y1 ≤ y ≤ y2, y3 ≤ y ≤ y4, and y5 ≤ y ≤ y6, the following integral transformations will
be determined:

Z
=

j (τ, s, p) =   ∫ 
y2j−1

y2j

  Z
__

 (τ, s, y) Vj (py) dy ,   j = 1, 2, 3 , (27)

where p stands for the roots of the characteristic equation presented below; Vj(py) represents the solutions of the dif-
ferential equations

d
2
Vj

dy
2  + p

2
Vj = 0 ,   j = 1, 2, 3 , (28)

with boundary conditions following from (26):

dVj

dy


y2j−1

 = 0 ,   λj 
dVj

dy


y2j

 − αj+1Vjy2j

 = 0 ,   j = 1, 2, 3 . (29)

The solutions of Eqs. (28) have the form

Vj (py) = D2j−1 sin (pjy) + D2j cos (pjy) ,   j = 1, 2, 3 , (30)

where D1–D6 are arbitrary constants. Subject to boundary conditions (29), the following system of equations is ob-
tained:

D2j−1 cos (pjy2j−1) − D2j sin (pjy2j−1) = 0 ,

D2j−1 

λj pj cos (pjy2j) + αj sin (pjy2j)

 + D2j 
− λj pj sin (pjy2j) + αj cos (pjy2j)

 = 0 , (31)

which has a nontrivial solution only in the case where its determinant vanishes. From this, the characteristic equation
for determining pj can be obtained:





b11
b21

     
b12
b22




 = 0 , (32)

where

b11 = cos (pjy2j−1) ;   b12 = − sin (pjy2j−1) ;   b21 = λj pj cos (pjy2j) + αj sin (pjy2j) ;

b22 = − λj pj sin (pjy2j) + αj cos (pjy2j) ,   j = 1, 2, 3 .

Having excluded the coefficient D2j from system (31), the expression for Vj(pjx) can be given in the form

Vj (pjy) = D2j−1 

sin (pjy) + gj cos (pjy)

 ,   j = 1, 2, 3 , (33)

where
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gj = − sin (pjy2j−1) ⁄ cos (pjy2j−1) ,   j = 1, 2, 3 .

It should be noted that solutions (33) with boundary conditions (29) represent the orthogonal systems of the functions
Vj(pjy). By requiring that this system of functions be orthonormalized, i.e.,

   ∫ 
y2j−1

y2j

  

Vj (pjy)

2
 dy = 1 ,

the constants D2j−1 can be found. Thus, integral transformations (27) have been determined. Having applied the ob-
tained integral transformations to relation (23)

   ∫ 
y2j−1

y2j

  







∂Z
__

j

∂τ
 − 

∂2
Z
__

j

∂y
2  − s

2
Z
__

j − FP1 (τ, s, y) − FP2 (τ, s, y)






 Vj (pjy) dy = 0 ,   j = 1, 2, 3 ,

it can be written that

dZ
=

j

dτ
 + s

2
 + pj

2
 Z

=
j = FP3j (τ, s, pj) + FP4j (τ, s, pj) ,   j = 1, 2, 3 , (34)

where

FP3j (τ, s, pj) =   ∫ 
y2j−1

y2j

  

FP1 (τ, s, y) + FP2 (τ, s, y)


 Vj (pjy) dy ;

FP4j (τ, s, pj) = Vj (pjy2j−1) 
q
_
uj+1 (τ, s)

bj
 + Vj (pjy2j) 

αj+1

bj
 θ
__

j+1
 m

 (τ, s) .

(35)

The initial conditions for Eqs. (34) will be obtained from (15) after applying integral transformations (17) and
(27) to them:

Z
=

jτ=0
 =   ∫ 

y2j−1

y2j

  y 










  ∑ 

i=1

3

Ai  ∫ 
x2i−1

x2i

  θi0 (x, y) Ui (sx) dx










 Vj (pjy) dy ,   j = 1, 2, 3 .

The solutions of Eqs. (34) are

Z
=

j (τ, s, pj) = exp − s
2
 + pj

2
 τ


 ×

× 






∫ 
0

τ



FP3j (τ, s, pj) + FP4j (τ, s, pj)

 exp 

s

2
 + pj

2
 τ


 dτ + Z

=
jτ=0







 ,   j = 1, 2, 3 .

By virtue of the orthonormalizability of the functions Ui(sx), i = 1, 2, 3, and Vj(pjy), i = 1, 2, 3, the final solution of
the problem has the form

T1 (τ, r, z) = ∑ 
p1




∑ 
s

Z
=

1 (τ, s, p1) U1 (sx)

 V1 (p1y) ,   T2 (τ, r, z) = ∑ 

p2




∑ 
s

Z
=

2 (τ, s, p2) U2 (sx)


 V2 (p2y) ,
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T3 (τ, r, z) = ∑ 

p3




∑ 

s

Z
=

3 (τ, s, p3) U3 (sx)

 V3 (p3y) .

Here, summation is carried out over the positive roots s and pj of Eqs. (21) and (32). Transition from the coordinates
x, y to the coordinates r, z is performed with the aid of relations (8) and (16).

The obtained solution of the heat-conduction problem for a system of three coaxial finite cylinders with the
indicated boundary conditions can be modified easily for other boundary conditions too. In the expressions presented
above, in addition to the boundary conditions in initial equations (2), (3), (4), and (5) and boundary conditions (19)
and (29), the equations used for determining the characteristic numbers, i.e., (21) and (32), as well as expressions (24)
and (35), also undergo a change.

Consider, for example, the following boundary conditions:
on the inner cylindrical surface — the condition of the 1st kind:

T1r=R1

 + T1 (τ, z) ;

on the outer cylindrical surface — the condition of the 3rd kind:

λ3 
∂T3

∂r



r=R4

 + α1 

T3r=R4

 − T1
 m

 (τ, z)

 = 0 ;

on the lower end of the inner cylinder — the condition of the 1st kind:

T1z=b
 = T2 (τ, r) ;

on the upper end of the inner cylinder — the condition of the 3rd kind:

λ1 
∂T1

∂z



z=c

 + α2 T1z=c
 − T2

 m
 (τ, r) = 0 ;

on the lower end of the middle cylinder — the condition of the 2nd kind:

λ2 
∂T2

∂z



z=b

 + q1 (τ, r) = 0 ;

on the upper end of the middle cylinder — the condition of the 1st kind:

T2z=b
 = T3 (τ, r) ;

on the lower end of the outer cylinder — the condition 3rd kind:

− λ3 
∂T3

∂z



z=b

 + α3 T3z=b
 − T3

 m
 (τ, r) = 0 ;

and on the upper  end of the outer  cylinder  — the condition of the 2nd kind:

λ3 
∂T3

∂z



z=c

 − q2 (τ, r) = 0 .

Then, in the system of equations (20) only the first equation will change:
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C1J0 (sx1) + C2Y0 (sx1) = 0 ,

and the system of equations (31) will take the form





sin (p1y1)
λ1p1 cos (p1y2) + α1 sin (p1y2)

          
cos (p1y1)

− λ1p1 sin (p1y2) + α1 cos (p1y2)



 = 0 ;





cos (p2y3)
sin (p2y4)

          
− sin (p2y3)
cos (p2y4)




 = 0 ;





λ3p3 cos (p3y5) − α3 sin (p3y5)
cos (p3y6)

          
− λ3p3 sin (p3y5) − α3 cos (p3y5)

− sin (p3y6)



 = 0 .

Expressions (24) and (35) will be written as

FP1 (τ, s, y) = A1x1 
dU1

dx


x1

 T1 (τ, y) + A3x6U3x6

 
α1

λ3
 T1

 m
 (τ, y) ,

FP41 (τ, s, p1) = 
dV1 (p1y)

dy



y1

 T2
___

 (τ, s) + V1 (p1y2) 
α2
b1

 T
__

2
 m

 (τ, s) ,

FP42 (τ, s, p2) = V2 (p2y3) 
q
_

1 (τ, s)
b2

 − 
dV2 (p2y)

dy



y4

 T3
___

 (τ, s) ,

FP43 (τ, s, p3) = V3 (p3y5) 
α3

b3
 T
__

3
 m

 (τ, s) + V3 (p3y6) 
q
_

2 (τ, s)
b3

 ,

where

T1
___

 (τ, s) = A1 ∫ 
x1

x2

xU1 (sx) T1 (τ, x) dx ;   T
__

1
 m

 (τ, s) = A1 ∫ 
x1

x2

xU1 (sx) T1
 m

 (τ, x) dx ;

q
_

1 (τ, s) = A2 ∫ 
x3

x4

xU2 (sx) q1 (τ, x) dx ;   T3
___

 (τ, s) = A2 ∫ 
x3

x4

xU2 (sx) T3 (τ, x) dx ;

T
__

3
 m

 (τ, s) = A3 ∫ 
x5

x6

xU3 (sx) T3
 m

 (τ, x) dx ;   q
_

2 (τ, s) = A3 ∫ 
x5

x6

xU3 (sx) q2 (τ, x) dx .

The remaining relations will remain intact.
Numerical Example. Below, the boundary conditions that were presented earlier, in the beginning of the

paper are used; heat release of power w2 = 17,500 W/m3 occurs only in the material of the middle layer of the cyl-
inder, whereas on the outer boundaries of other adjacent layers there is heat exchange with the medium having a lower
temperature (T1

m = 193 K, T2
m = T3

m = 258 K) and the sources that absorb heat: q1 = q4 = −580 W/m2; q2 = −116
W/m2. The remaining initial quantities are: R1 = 0.1 m; R2 = 0.25 m; R3 = 0.3 m; R4 = 0.4 m; b = 0.6 m; c = 0.8
m; q3 = 0; w1 = 0; w3 = 0; a1 = 2.2⋅10−7 m2/sec; a2 = 2.5⋅10−7 m2/sec; a3 = 2.8⋅10−7 m2/sec; λ1 = 0.47 W/(m⋅K);
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λ2 = 0.7 W/(m⋅K); λ3 = 0.58 W/(m⋅K); T10 = 283 K; T20 = 293 K; T30 = 303 K; T4
m = 193 K; α1 = 0.46 W/(m2⋅K);

α2 = 0.23 W/(m2⋅K); α3 = 0.23 W/(m2⋅K), and α4 = 0.35 W/(m2⋅K).
Figure 2 presents a curve demonstrating a change in the temperature over the radius of the coaxial cylinder

in its middle section over the height for the time τ = 15 h from the beginning of the process. The highest temperature
is observed near the center of the middle layer, which is to be expected as the energy of power w2 = 17.5⋅103

W/m3 is released there. In the inner and outer layers, the temperature lowers appreciably towards the boundaries,
where there is a heat sink q1 = −580 W/m2 at the boundary r = R1 and heat exchange with the medium at T4

m = 193
K (−80oC) at the boundary r = R4. Moreover, it is assumed that the ends of the inner and outer cylinders are cooled
by the absorbing heat sources: q2 = −116 W/m2, q4 = −580 W/m2 at z = b (lower end), as well as heat exchange with
the medium of lower temperature: T2

m = T2
m = 258 K, T2

m = 193 K (−15oC, −80oC, respectively).
Figure 3 presents the curves depicting a change in the temperature with time on the outer boundary r = R2

of the inner layer and on the outer boundary r = R3 of the middle layer at z = 0.7 from the beginning of the process
to the time value τ = 10 h. As was expected, the values of temperature at the boundaries of the middle layer
(R2 ≤ r ≤ R3) are nearly the same due to its small thickness and absence of external heat release w1 = 0, w3 = 0 in the
inner (R1 ≤ r ≤ R2) and outer (R3 ≤ r ≤ R4) layers.

NOTATION

ai, thermal diffusivity, m2/sec; aij, coefficient of the 1st system of equations; Ai, constant of integral transfor-
mation; bi, thermal coefficient, W⋅sec1 ⁄ 2/(m2⋅K); bij, coefficient of the 2nd system of equations; b, c, coordinates of
the lower and upper ends of the cylinder, respectively, m; Ci, Di, arbitrary constants; fi, coefficient of the 1st system
of orthogonal functions; FPi and FPij, right-hand sides of differential equations; gi, coefficient of the 2nd system of
orthogonal functions; J0 and J1, zero- and first-order Bessel functions of the first kind; pj, root of the 2nd charac-
teristics equation; qi, heat-flux power on the cylinder surface, W/m2; r, radial coordinate of the cylinder, m; Ri, radius
of the cylinder, m; si, root of the 1st characteristic equation; Ti, temperature of the cylinder, K; Ti0, initial temperature
of the cylinder, K; Ti

m, temperature of surrounding medium, K; T1, T2, and T3, temperatures on the cylinder surfaces,
K; T1

___
, T2
___

, and T3
___

, temperatures on the cylinder surfaces in the region of mappings; Ui and Vj, functions of integral
transformations; wi, power of internal heat release, W/m3; xi, replaced radial coordinate; Y0 and Y1, zero- and first-
order Bessel functions of the second kind; z, vertical coordinate, m; Z

__
i and Z

=
i , temperature of cylinders in the region

of mappings; αi, heat-transfer coefficient, W/(m2⋅K); λi, thermal conductivity, W/(m⋅K); τ, time, sec. Subscripts: i and
j, numbers of functions and constants. Superscripts: m, surrounding medium; overbar and two overbars, function in the
region of mappings of the first and second integral transformations, respectively.
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